Try Again
In mathematics, trying again is called iterating.
The User Equilibrium assignment in Travel Demand Models is an iterative
process. Those iterations are of the Frank-Wolfe algorithm in order to compute
an equilibrium volume. Between iterations,
the IMPEDANCE is updated. NO other attributes,
especially capacity, should be changed
until the equilibrium process is completed.
Changing the formula for impedance, or any link attributes, except the
volume, during this process violates the assumptions of the Frank-Wolfe algorithm
that is being used.
This does not mean that the initial link capacities are absolutely
correct. Capacities on links are most
often based on characteristics of the design for that link, e.g. lane width. However there are circumstances where the capacity
depends not only on the design characteristics
of the link, but on the volumes on this or other links.
· For example, the capacity of a link approaching
a signalized intersection is a function of the green to Cycle Length, g/C,
of that signal. An initial assumption
has to be made for the g/C ratio before the volumes are known, but
technically the g/C ratio is a function of the approach volume on that
link divided by the approach volumes of all links approaching that
intstection. Those volumes are precisely
what is being computed in the assignment iterations.
· Similarly, the capacity of truck climbing lanes
depends on the truck percentage on that link as well as truck percentages of
adjacent links. These percentages will
not be known until after the assignment iterations are complete.
This issue is not unique to assignment. It can occur
whenever an iterative process is used. Assumptions
may be made in order to solve the process, but these assumptions may be inconsistent
with the solution. In fact the Travel Demand
Modeling process often already has such a feedback loop . In order to distribute and find the mode choice
in creating a trip table, it is necessary to know the impedances, e.g. skim
times, between zones for each mode, which are not really known until after that
trip table is assigned. A feedback loop uses
the impedances based on the initial assignment to update the inputs to trip distribution
and mode choice.
A similar process is proposed for assignment. Assumptions are made for network link capacities
in order to solve for volumes on that network.
After the assignment ( NOT DURING THE ASSIGNMENT), the capacities can be
recomputed based on the volumes which were assigned. If these capacities are significantly
different than the capacities that were assumed before the assignment began,
then the link capacities should be updated and a new assignment should begin.
This process should continue until the capacities that were assumed as the input
to the assignment are sufficiently consistent with the capacities computed from
the volumes that are output from the assignment.
No comments:
Post a Comment